(12, 12a, 12 b) Interpret expressions that represent a quantity in terms of its context. ${ }^{*}$ [A-SSE1] Interpret parts of an expression such as terms, factors, and coefficients. [A-SSE1a] Interpret complicated expressions by viewing one or more of their parts as a single entity. [A-SSE1b]				
(17) Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. [A-APR3]				
(33) Write a function that describes a relationship between two quantities.* [F- BF1] a. Combine standard function types using arithmetic operations. [F-BF1b]				

(42) (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). [S-MD7]								
(9) (+) Add, subtract, and multiply matrices of appropriate dimensions. [N-VM8]					\quad	(11) (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse. [N-VM10]		
:---	:---	:---						
(7) (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network. (Use technology to approximate roots.) [N-VM6]								
(8) (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled. [N-VM7								
(10) (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties. [N-VM9]								
(26) (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 $\times 3$ or greater). [A-REI9]								

